Publications

52938320_10216928034224587_670926139912355840_o
Last update: July 21, 2020

In the Pipeline
  1. On Fundamental Solutions of Higher-Order Space-Fractional Dirac equations (in preparation; to appear on September 2020)
  2. The role of $\mathfrak{sl}_{-1}(2)$ symmetries on oscillator-like representations (in preparation; copy under request)
  3. (with Swanhild BernsteinA fractional Clifford Fourier Transform based on a deformed Hamiltonian for the harmonic oscillator (in production; copy under request)
  4. Time-Changed Dirac–Fokker–Planck Equations on the LatticeJ Fourier Anal Appl 26, 44 (2020). https://doi.org/10.1007/s00041-020-09754-6

    2011-2019 
  5. Faustino, Nelson. 2019. “Relativistic Wave Equations on the Lattice: An Operational Perspective”. In Topics in Clifford Analysis, 439-469. Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-23854-4_21.
    Publicado • 10.1007/978-3-030-23854-4_21
  6. Nelson Faustino. 2019. “A note on the discrete Cauchy-Kovalevskaya extension”. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.5452.
    10.1002/mma.5452
  7. Faustino, Nelson. 2018. “Symmetry preserving discretization schemes through hypercomplex variables”. Trabalho apresentado em INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017)Salónica, Grécia, 020003-1-020003-4.
    Publicado • 10.1063/1.5043648
  8. N. Faustino. 2017. “Hypercomplex Fock states for discrete electromagnetic Schrödinger operators: A Bayesian probability perspective”. Applied Mathematics and Computation 315: 531-548. https://doi.org/10.1016/j.amc.2017.07.080.
    10.1016/j.amc.2017.07.080
  9. Nelson José Rodrigues Faustino. 2017. “A conformal group approach to the Dirac-Kähler system on the lattice”. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002%2Fmma.4291.
    10.1002/mma.4291
  10. Faustino, Nelson. 2016. “Solutions for the Klein–Gordon and Dirac Equations on the Lattice Based on Chebyshev Polynomials”. Complex Analysis and Operator Theory.
    10.1007/s11785-015-0476-5
  11. Abreu, Luis Daniel; Faustino, Nelson. 2015. “ON TOEPLITZ OPERATORS AND LOCALIZATION OPERATORS”. Proceedings of the American Mathematical Society 143 (10): 4317-4323. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000364412600019&KeyUID=WOS:000364412600019.
    10.1090/proc/12211
  12. Faustino, N.. 2014. “Classes of hypercomplex polynomials of discrete variable based on the quasi-monomiality principle”. Applied Mathematics and Computation 247: 607-622.
    10.1016/j.amc.2014.09.027
  13. Faustino, Nelson. 2013. “Special Functions of Hypercomplex Variable on the Lattice Based on SU(1,1)”. Symmetry Integrability and Geometry-Methods and Applications 9.
    10.3842/SIGMA.2013.065
  14. Constales, Denis; Faustino, Nelson; Krausshar, Rolf Soeren. 2011. “Fock spaces, Landau operators and the time-harmonic Maxwell equations”. Journal of Physics a-Mathematical and Theoretical 44 (13).
    10.1088/1751-8113/44/13/135303
  15. Faustino, N.; Ren, G.. 2011. “(Discrete) Almansi type decompositions: an umbral calculus framework based on DSP (1 vertical bar 2) symmetries”. Mathematical Methods in the Applied Sciences 34 (16): 1961-1979.

    10.1002/mma.1498


    2006-2010 
  16. Faustino, N.. 2010. “Further results in discrete Clifford analysis”. In Progress in Analysis and Its Applications7th International ISAAC CongressLondres, Reino Unido, 205-211. Singapura: WORLD SCIENTIFIC.
  17. Cerejeiras, P.; Faustino, N.; Vieira, N.. 2008. “Numerical Clifford analysis for nonlinear Schrodinger problem”. Numerical Methods For Partial Differential Equations 24 (4): 1181-1202.
    10.1002/num.20312
  18. Faustino, Nelson. 2008. “The application of a discrete function theory to the solution of the Navier-Stokes equations”. Advances in Applied Clifford Algebras 18 (3-4): 599-610.
    10.1007/s00006-008-0097-4
  19. Discrete Dirac operators...
  20. Fischer Decomposition…
  21. Faustino, N.; Vieira, N.; Simos, Theodore E.; Psihoyios, George; Tsitouras, Ch.. 2007. “Numerical Clifford Analysis for the Non-stationary Schro¨dinger Equation”. Trabalho apresentado em INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2007)Corfu, Grécia, 742-746.
    Publicado • 10.1063/1.2790258
  22. Faustino, Nelson. 2006. “Interpolating Wavelets applied to the Navier-Stokes equations”. PAMM 6 (1): 735-736. http://dx.doi.org/10.1002/pamm.200610348.
    Publicado • 10.1002/pamm.200610348
  23. Faustino, N; Gurlebeck, K; Hommel, A; Kahler, U. 2006. “Difference potentials for the Navier-Stokes equations in unbounded domains”. Journal of Difference Equations and Applications 12 (6): 577-595.
    10.1080/10236190600637965

 

%d bloggers like this: